paint-brush
Análise do código-fonte do Apache SeaTunnel Zeta Engine (parte 3): Envio de tarefas do lado do servidorpor@williamguo
483 leituras
483 leituras

Análise do código-fonte do Apache SeaTunnel Zeta Engine (parte 3): Envio de tarefas do lado do servidor

por William Guo115m2024/09/20
Read on Terminal Reader

Muito longo; Para ler

Desta vez, é sobre o processo de envio de tarefas do lado do servidor.
featured image - Análise do código-fonte do Apache SeaTunnel Zeta Engine (parte 3): Envio de tarefas do lado do servidor
William Guo HackerNoon profile picture

Este é o último artigo da série que analisa o código-fonte do Apache SeaTunnel Zeta Engine; revise a série anterior para obter uma visão completa:


Vamos revisar os componentes que são executados após o servidor iniciar:

  • CoordinatorService : habilitado somente em nós mestre/em espera, escuta o status do cluster e manipula failovers mestre-em espera.
  • SlotService : Habilitado em nós de trabalho, reporta periodicamente seu status ao mestre.
  • TaskExecutionService : habilitado em nós de trabalho, atualiza periodicamente as métricas de tarefas para IMAP.


Quando nenhuma tarefa é recebida pelo cluster, esses componentes são executados. No entanto, quando um cliente envia uma mensagem SeaTunnelSubmitJobCodec para o servidor, como o servidor lida com isso?

Recepção de mensagem

Como o cliente e o servidor estão em máquinas diferentes, chamadas de método não podem ser usadas; em vez disso, a passagem de mensagens é empregada. Ao receber uma mensagem, como o servidor a processa?


Primeiramente, o cliente envia uma mensagem do tipo SeaTunnelSubmitJobCodec :

 // Client code ClientMessage request = SeaTunnelSubmitJobCodec.encodeRequest( jobImmutableInformation.getJobId(), seaTunnelHazelcastClient .getSerializationService() .toData(jobImmutableInformation), jobImmutableInformation.isStartWithSavePoint()); PassiveCompletableFuture<Void> submitJobFuture = seaTunnelHazelcastClient.requestOnMasterAndGetCompletableFuture(request);

Na classe SeaTunnelSubmitJobCodec , ele é associado a uma classe SeaTunnelMessageTaskFactoryProvider , que mapeia tipos de mensagem para classes MessageTask . Para SeaTunnelSubmitJobCodec , ele mapeia para a classe SubmitJobTask :


 private final Int2ObjectHashMap<MessageTaskFactory> factories = new Int2ObjectHashMap<>(60); private void initFactories() { factories.put( SeaTunnelPrintMessageCodec.REQUEST_MESSAGE_TYPE, (clientMessage, connection) -> new PrintMessageTask(clientMessage, node, connection)); factories.put( SeaTunnelSubmitJobCodec.REQUEST_MESSAGE_TYPE, (clientMessage, connection) -> new SubmitJobTask(clientMessage, node, connection)); ..... }


Ao examinar a classe SubmitJobTask , ela invoca a classe SubmitJobOperation :

 @Override protected Operation prepareOperation() { return new SubmitJobOperation( parameters.jobId, parameters.jobImmutableInformation, parameters.isStartWithSavePoint); }


Na classe SubmitJobOperation , as informações da tarefa são transferidas para o componente CoordinatorService por meio de seu método submitJob :

 @Override protected PassiveCompletableFuture<?> doRun() throws Exception { SeaTunnelServer seaTunnelServer = getService(); return seaTunnelServer .getCoordinatorService() .submitJob(jobId, jobImmutableInformation, isStartWithSavePoint); }

Neste ponto, uma mensagem do cliente é efetivamente entregue ao servidor para invocação de método. Outros tipos de operações podem ser rastreados de maneira semelhante.

CoordenadorServiço

A seguir, vamos explorar como CoordinatorService lida com envios de tarefas:

 public PassiveCompletableFuture<Void> submitJob( long jobId, Data jobImmutableInformation, boolean isStartWithSavePoint) { CompletableFuture<Void> jobSubmitFuture = new CompletableFuture<>(); // First, check if a job with the same ID already exists if (getJobMaster(jobId) != null) { logger.warning( String.format( "The job %s is currently running; no need to submit again.", jobId)); jobSubmitFuture.complete(null); return new PassiveCompletableFuture<>(jobSubmitFuture); } // Initialize JobMaster object JobMaster jobMaster = new JobMaster( jobImmutableInformation, this.nodeEngine, executorService, getResourceManager(), getJobHistoryService(), runningJobStateIMap, runningJobStateTimestampsIMap, ownedSlotProfilesIMap, runningJobInfoIMap, metricsImap, engineConfig, seaTunnelServer); executorService.submit( () -> { try { // Ensure no duplicate tasks with the same ID if (!isStartWithSavePoint && getJobHistoryService().getJobMetrics(jobId) != null) { throw new JobException( String.format( "The job id %s has already been submitted and is not starting with a savepoint.", jobId)); } // Add task info to IMAP runningJobInfoIMap.put( jobId, new JobInfo(System.currentTimeMillis(), jobImmutableInformation)); runningJobMasterMap.put(jobId, jobMaster); // Initialize JobMaster jobMaster.init( runningJobInfoIMap.get(jobId).getInitializationTimestamp(), false); // Task creation successful jobSubmitFuture.complete(null); } catch (Throwable e) { String errorMsg = ExceptionUtils.getMessage(e); logger.severe(String.format("submit job %s error %s ", jobId, errorMsg)); jobSubmitFuture.completeExceptionally(new JobException(errorMsg)); } if (!jobSubmitFuture.isCompletedExceptionally()) { // Start job execution try { jobMaster.run(); } finally { // Remove jobMaster from map if not cancelled if (!jobMaster.getJobMasterCompleteFuture().isCancelled()) { runningJobMasterMap.remove(jobId); } } } else { runningJobInfoIMap.remove(jobId); runningJobMasterMap.remove(jobId); } }); return new PassiveCompletableFuture<>(jobSubmitFuture); }

No servidor, um objeto JobMaster é criado para gerenciar a tarefa individual. Durante a criação JobMaster , ele recupera o gerenciador de recursos via getResourceManager() e informações do histórico de tarefas via getJobHistoryService() . O jobHistoryService é inicializado na inicialização, enquanto ResourceManager é carregado preguiçosamente no primeiro envio de tarefa:

 /** Lazy load for resource manager */ public ResourceManager getResourceManager() { if (resourceManager == null) { synchronized (this) { if (resourceManager == null) { ResourceManager manager = new ResourceManagerFactory(nodeEngine, engineConfig) .getResourceManager(); manager.init(); resourceManager = manager; } } } return resourceManager; }

Gerenciador de Recursos

Atualmente, o SeaTunnel suporta apenas implantação autônoma. Ao inicializar ResourceManager , ele reúne todos os nós do cluster e envia um SyncWorkerProfileOperation para obter informações do nó, atualizando o estado interno registerWorker :

 @Override public void init() { log.info("Init ResourceManager"); initWorker(); } private void initWorker() { log.info("initWorker... "); List<Address> aliveNode = nodeEngine.getClusterService().getMembers().stream() .map(Member::getAddress) .collect(Collectors.toList()); log.info("init live nodes: {}", aliveNode); List<CompletableFuture<Void>> futures = aliveNode.stream() .map( node -> sendToMember(new SyncWorkerProfileOperation(), node) .thenAccept( p -> { if (p != null) { registerWorker.put( node, (WorkerProfile) p); log.info( "received new worker register: " + ((WorkerProfile) p) .getAddress()); } })) .collect(Collectors.toList()); futures.forEach(CompletableFuture::join); log.info("registerWorker: {}", registerWorker); }

Anteriormente, observamos que o SlotService envia mensagens heartbeat para o mestre de cada nó periodicamente. Ao receber esses heartbeats, o ResourceManager atualiza os status do nó em seu estado interno.


 @Override public void heartbeat(WorkerProfile workerProfile) { if (!registerWorker.containsKey(workerProfile.getAddress())) { log.info("received new worker register: " + workerProfile.getAddress()); sendToMember(new ResetResourceOperation(), workerProfile.getAddress()).join(); } else { log.debug("received worker heartbeat from: " + workerProfile.getAddress()); } registerWorker.put(workerProfile.getAddress(), workerProfile); }

Mestre do Trabalho

No CoordinatorService , uma instância JobMaster é criada e seu método init é chamado. Quando o método init é concluído, considera-se que a criação da tarefa foi bem-sucedida. O método run é então chamado para executar formalmente a tarefa.


Vamos dar uma olhada na inicialização e no método init .

 public JobMaster( @NonNull Data jobImmutableInformationData, @NonNull NodeEngine nodeEngine, @NonNull ExecutorService executorService, @NonNull ResourceManager resourceManager, @NonNull JobHistoryService jobHistoryService, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull IMap ownedSlotProfilesIMap, @NonNull IMap<Long, JobInfo> runningJobInfoIMap, @NonNull IMap<Long, HashMap<TaskLocation, SeaTunnelMetricsContext>> metricsImap, EngineConfig engineConfig, SeaTunnelServer seaTunnelServer) { this.jobImmutableInformationData = jobImmutableInformationData; this.nodeEngine = nodeEngine; this.executorService = executorService; flakeIdGenerator = this.nodeEngine .getHazelcastInstance() .getFlakeIdGenerator(Constant.SEATUNNEL_ID_GENERATOR_NAME); this.ownedSlotProfilesIMap = ownedSlotProfilesIMap; this.resourceManager = resourceManager; this.jobHistoryService = jobHistoryService; this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.runningJobInfoIMap = runningJobInfoIMap; this.engineConfig = engineConfig; this.metricsImap = metricsImap; this.seaTunnelServer = seaTunnelServer; this.releasedSlotWhenTaskGroupFinished = new ConcurrentHashMap<>(); }

Durante a inicialização, apenas atribuições simples de variáveis são realizadas sem nenhuma operação significativa. Precisamos focar no método init .

 public synchronized void init(long initializationTimestamp, boolean restart) throws Exception { // The server receives a binary object from the client, // which is first converted to a JobImmutableInformation object, the same object sent by the client jobImmutableInformation = nodeEngine.getSerializationService().toObject(jobImmutableInformationData); // Get the checkpoint configuration, such as the interval, timeout, etc. jobCheckpointConfig = createJobCheckpointConfig( engineConfig.getCheckpointConfig(), jobImmutableInformation.getJobConfig()); LOGGER.info( String.format( "Init JobMaster for Job %s (%s) ", jobImmutableInformation.getJobConfig().getName(), jobImmutableInformation.getJobId())); LOGGER.info( String.format( "Job %s (%s) needed jar urls %s", jobImmutableInformation.getJobConfig().getName(), jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls())); ClassLoader appClassLoader = Thread.currentThread().getContextClassLoader(); // Get the ClassLoader ClassLoader classLoader = seaTunnelServer .getClassLoaderService() .getClassLoader( jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls()); // Deserialize the logical DAG from the client-provided information logicalDag = CustomClassLoadedObject.deserializeWithCustomClassLoader( nodeEngine.getSerializationService(), classLoader, jobImmutableInformation.getLogicalDag()); try { Thread.currentThread().setContextClassLoader(classLoader); // Execute save mode functionality, such as table creation and deletion if (!restart && !logicalDag.isStartWithSavePoint() && ReadonlyConfig.fromMap(logicalDag.getJobConfig().getEnvOptions()) .get(EnvCommonOptions.SAVEMODE_EXECUTE_LOCATION) .equals(SaveModeExecuteLocation.CLUSTER)) { logicalDag.getLogicalVertexMap().values().stream() .map(LogicalVertex::getAction) .filter(action -> action instanceof SinkAction) .map(sink -> ((SinkAction<?, ?, ?, ?>) sink).getSink()) .forEach(JobMaster::handleSaveMode); } // Parse the logical plan into a physical plan final Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> planTuple = PlanUtils.fromLogicalDAG( logicalDag, nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, engineConfig.getQueueType(), engineConfig); this.physicalPlan = planTuple.f0(); this.physicalPlan.setJobMaster(this); this.checkpointPlanMap = planTuple.f1(); } finally { // Reset the current thread's ClassLoader and release the created classLoader Thread.currentThread().setContextClassLoader(appClassLoader); seaTunnelServer .getClassLoaderService() .releaseClassLoader( jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls()); } Exception initException = null; try { // Initialize the checkpoint manager this.initCheckPointManager(restart); } catch (Exception e) { initException = e; } // Add some callback functions for job state listening this.initStateFuture(); if (initException != null) { if (restart) { cancelJob(); } throw initException; } }


Por fim, vamos dar uma olhada no método run :

 public void run() { try { physicalPlan.startJob(); } catch (Throwable e) { LOGGER.severe( String.format( "Job %s (%s) run error with: %s", physicalPlan.getJobImmutableInformation().getJobConfig().getName(), physicalPlan.getJobImmutableInformation().getJobId(), ExceptionUtils.getMessage(e))); } finally { jobMasterCompleteFuture.join(); if (engineConfig.getConnectorJarStorageConfig().getEnable()) { List<ConnectorJarIdentifier> pluginJarIdentifiers = jobImmutableInformation.getPluginJarIdentifiers(); seaTunnelServer .getConnectorPackageService() .cleanUpWhenJobFinished( jobImmutableInformation.getJobId(), pluginJarIdentifiers); } } }

Este método é relativamente simples, chamando physicalPlan.startJob() para executar o plano físico gerado.


A partir do código acima, fica evidente que, após o servidor receber uma solicitação de envio de tarefa do cliente, ele inicializa a classe JobMaster , que gera o plano físico a partir do plano lógico e, em seguida, executa o plano físico.


Em seguida, precisamos nos aprofundar em como o plano lógico é convertido em um plano físico.

Conversão do Plano Lógico para o Plano Físico

A geração do plano físico é feita chamando o seguinte método no JobMaster :

 final Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> planTuple = PlanUtils.fromLogicalDAG( logicalDag, nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, engineConfig.getQueueType(), engineConfig);

No método de geração do plano físico, o plano lógico é primeiro convertido em um plano de execução e, então, o plano de execução é convertido em um plano físico.


 public static Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> fromLogicalDAG( @NonNull LogicalDag logicalDag, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType, @NonNull EngineConfig engineConfig) { return new PhysicalPlanGenerator( new ExecutionPlanGenerator( logicalDag, jobImmutableInformation, engineConfig) .generate(), nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, queueType) .generate(); }

Geração do Plano de Execução

 public ExecutionPlanGenerator( @NonNull LogicalDag logicalPlan, @NonNull JobImmutableInformation jobImmutableInformation, @NonNull EngineConfig engineConfig) { checkArgument( logicalPlan.getEdges().size() > 0, "ExecutionPlan Builder must have LogicalPlan."); this.logicalPlan = logicalPlan; this.jobImmutableInformation = jobImmutableInformation; this.engineConfig = engineConfig; } public ExecutionPlan generate() { log.debug("Generate execution plan using logical plan:"); Set<ExecutionEdge> executionEdges = generateExecutionEdges(logicalPlan.getEdges()); log.debug("Phase 1: generate execution edge list {}", executionEdges); executionEdges = generateShuffleEdges(executionEdges); log.debug("Phase 2: generate shuffle edge list {}", executionEdges); executionEdges = generateTransformChainEdges(executionEdges); log.debug("Phase 3: generate transform chain edge list {}", executionEdges); List<Pipeline> pipelines = generatePipelines(executionEdges); log.debug("Phase 4: generate pipeline list {}", pipelines); ExecutionPlan executionPlan = new ExecutionPlan(pipelines, jobImmutableInformation); log.debug("Phase 5 : generate execution plan {}", executionPlan); return executionPlan; }

A classe ExecutionPlanGenerator pega um plano lógico e produz um plano de execução por meio de uma série de etapas, incluindo geração de arestas de execução, arestas de embaralhamento, arestas de cadeia de transformação e, finalmente, pipelines.

Geração do Plano Físico

A classe PhysicalPlanGenerator converte o plano de execução em um plano físico:

 public PhysicalPlanGenerator( @NonNull ExecutionPlan executionPlan, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType) { this.executionPlan = executionPlan; this.nodeEngine = nodeEngine; this.jobImmutableInformation = jobImmutableInformation; this.initializationTimestamp = initializationTimestamp; this.executorService = executorService; this.flakeIdGenerator = flakeIdGenerator; this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.queueType = queueType; } public PhysicalPlan generate() { List<PhysicalVertex> physicalVertices = generatePhysicalVertices(executionPlan); List<PhysicalEdge> physicalEdges = generatePhysicalEdges(executionPlan); PhysicalPlan physicalPlan = new PhysicalPlan(physicalVertices, physicalEdges); log.debug("Generate physical plan: {}", physicalPlan); return physicalPlan; }


Vamos examinar o conteúdo dessas duas classes.

 public class ExecutionPlan { private final List<Pipeline> pipelines; private final JobImmutableInformation jobImmutableInformation; } public class Pipeline { /** The ID of the pipeline. */ private final Integer id; private final List<ExecutionEdge> edges; private final Map<Long, ExecutionVertex> vertexes; } public class ExecutionEdge { private ExecutionVertex leftVertex; private ExecutionVertex rightVertex; } public class ExecutionVertex { private Long vertexId; private Action action; private int parallelism; }


Vamos comparar com o plano lógico:

 public class LogicalDag implements IdentifiedDataSerializable { @Getter private JobConfig jobConfig; private final Set<LogicalEdge> edges = new LinkedHashSet<>(); private final Map<Long, LogicalVertex> logicalVertexMap = new LinkedHashMap<>(); private IdGenerator idGenerator; private boolean isStartWithSavePoint = false; } public class LogicalEdge implements IdentifiedDataSerializable { private LogicalVertex inputVertex; private LogicalVertex targetVertex; private Long inputVertexId; private Long targetVertexId; } public class LogicalVertex implements IdentifiedDataSerializable { private Long vertexId; private Action action; private int parallelism; }

Parece que cada Pipeline se assemelha a um plano lógico. Por que precisamos dessa etapa de transformação? Vamos dar uma olhada mais de perto no processo de geração de um plano lógico.


Conforme mostrado acima, a geração de um plano de execução envolve cinco etapas, que revisaremos uma por uma.

  • Etapa 1: Convertendo o Plano Lógico em Plano de Execução
 // Input is a set of logical plan edges, where each edge stores upstream and downstream nodes private Set<ExecutionEdge> generateExecutionEdges(Set<LogicalEdge> logicalEdges) { Set<ExecutionEdge> executionEdges = new LinkedHashSet<>(); Map<Long, ExecutionVertex> logicalVertexIdToExecutionVertexMap = new HashMap(); // Sort in order: first by input node, then by output node List<LogicalEdge> sortedLogicalEdges = new ArrayList<>(logicalEdges); Collections.sort( sortedLogicalEdges, (o1, o2) -> { if (o1.getInputVertexId() != o2.getInputVertexId()) { return o1.getInputVertexId() > o2.getInputVertexId() ? 1 : -1; } if (o1.getTargetVertexId() != o2.getTargetVertexId()) { return o1.getTargetVertexId() > o2.getTargetVertexId() ? 1 : -1; } return 0; }); // Loop to convert each logical plan edge to an execution plan edge for (LogicalEdge logicalEdge : sortedLogicalEdges) { LogicalVertex logicalInputVertex = logicalEdge.getInputVertex(); ExecutionVertex executionInputVertex = logicalVertexIdToExecutionVertexMap.computeIfAbsent( logicalInputVertex.getVertexId(), vertexId -> { long newId = idGenerator.getNextId(); // Recreate Action for each logical plan node Action newLogicalInputAction = recreateAction( logicalInputVertex.getAction(), newId, logicalInputVertex.getParallelism()); // Convert to execution plan node return new ExecutionVertex( newId, newLogicalInputAction, logicalInputVertex.getParallelism()); }); // Similarly, recreate execution plan nodes for target nodes LogicalVertex logicalTargetVertex = logicalEdge.getTargetVertex(); ExecutionVertex executionTargetVertex = logicalVertexIdToExecutionVertexMap.computeIfAbsent( logicalTargetVertex.getVertexId(), vertexId -> { long newId = idGenerator.getNextId(); Action newLogicalTargetAction = recreateAction( logicalTargetVertex.getAction(), newId, logicalTargetVertex.getParallelism()); return new ExecutionVertex( newId, newLogicalTargetAction, logicalTargetVertex.getParallelism()); }); // Generate execution plan edge ExecutionEdge executionEdge = new ExecutionEdge(executionInputVertex, executionTargetVertex); executionEdges.add(executionEdge); } return executionEdges; }
  • Passo 2
 private Set<ExecutionEdge> generateShuffleEdges(Set<ExecutionEdge> executionEdges) { // Map of upstream node ID to list of downstream nodes Map<Long, List<ExecutionVertex>> targetVerticesMap = new LinkedHashMap<>(); // Store only nodes of type Source Set<ExecutionVertex> sourceExecutionVertices = new HashSet<>(); executionEdges.forEach( edge -> { ExecutionVertex leftVertex = edge.getLeftVertex(); ExecutionVertex rightVertex = edge.getRightVertex(); if (leftVertex.getAction() instanceof SourceAction) { sourceExecutionVertices.add(leftVertex); } targetVerticesMap .computeIfAbsent(leftVertex.getVertexId(), id -> new ArrayList<>()) .add(rightVertex); }); if (sourceExecutionVertices.size() != 1) { return executionEdges; } ExecutionVertex sourceExecutionVertex = sourceExecutionVertices.stream().findFirst().get(); Action sourceAction = sourceExecutionVertex.getAction(); List<CatalogTable> producedCatalogTables = new ArrayList<>(); if (sourceAction instanceof SourceAction) { try { producedCatalogTables = ((SourceAction<?, ?, ?>) sourceAction) .getSource() .getProducedCatalogTables(); } catch (UnsupportedOperationException e) { } } else if (sourceAction instanceof TransformChainAction) { return executionEdges; } else { throw new SeaTunnelException( "source action must be SourceAction or TransformChainAction"); } // If the source produces a single table or // the source has only one downstream output, return directly if (producedCatalogTables.size() <= 1 || targetVerticesMap.get(sourceExecutionVertex.getVertexId()).size() <= 1) { return executionEdges; } List<ExecutionVertex> sinkVertices = targetVerticesMap.get(sourceExecutionVertex.getVertexId()); // Check if there are other types of actions, currently downstream nodes should ideally have two types: Transform and Sink; here we check if only Sink type is present Optional<ExecutionVertex> hasOtherAction = sinkVertices.stream() .filter(vertex -> !(vertex.getAction() instanceof SinkAction)) .findFirst(); checkArgument(!hasOtherAction.isPresent()); // After executing the above code, the current scenario is: // There is only one data source, this source produces multiple tables, and multiple sink nodes depend on these tables // This means the task has only two types of nodes: a source node that produces multiple tables and a group of sink nodes depending on this source // A new shuffle node will be created and added between the source and sinks // Modify the dependency relationship to source -> shuffle -> multiple sinks Set<ExecutionEdge> newExecutionEdges = new LinkedHashSet<>(); // Shuffle strategy will not be explored in detail here ShuffleStrategy shuffleStrategy = ShuffleMultipleRowStrategy.builder() .jobId(jobImmutableInformation.getJobId()) .inputPartitions(sourceAction.getParallelism()) .catalogTables(producedCatalogTables) .queueEmptyQueueTtl( (int) (engineConfig.getCheckpointConfig().getCheckpointInterval() * 3)) .build(); ShuffleConfig shuffleConfig = ShuffleConfig.builder().shuffleStrategy(shuffleStrategy).build(); long shuffleVertexId = idGenerator.getNextId(); String shuffleActionName = String.format("Shuffle [%s]", sourceAction.getName()); ShuffleAction shuffleAction = new ShuffleAction(shuffleVertexId, shuffleActionName, shuffleConfig); shuffleAction.setParallelism(sourceAction.getParallelism()); ExecutionVertex shuffleVertex = new ExecutionVertex(shuffleVertexId, shuffleAction, shuffleAction.getParallelism()); ExecutionEdge sourceToShuffleEdge = new ExecutionEdge(sourceExecutionVertex, shuffleVertex); newExecutionEdges.add(sourceToShuffleEdge); // Set the parallelism of multiple sink nodes to 1 for (ExecutionVertex sinkVertex : sinkVertices) { sinkVertex.setParallelism(1); sinkVertex.getAction().setParallelism(1); ExecutionEdge shuffleToSinkEdge = new ExecutionEdge(shuffleVertex, sinkVertex); newExecutionEdges.add(shuffleToSinkEdge); } return newExecutionEdges; }

A etapa Shuffle aborda cenários específicos em que a fonte suporta leitura de múltiplas tabelas, e há múltiplos nós sink dependendo dessa fonte. Em tais casos, um nó shuffle é adicionado entre eles.

Passo 3

 private Set<ExecutionEdge> generateTransformChainEdges(Set<ExecutionEdge> executionEdges) { // Uses three structures: stores all Source nodes and the input/output nodes for each // inputVerticesMap stores all upstream input nodes by downstream node id as the key // targetVerticesMap stores all downstream output nodes by upstream node id as the key Map<Long, List<ExecutionVertex>> inputVerticesMap = new HashMap<>(); Map<Long, List<ExecutionVertex>> targetVerticesMap = new HashMap<>(); Set<ExecutionVertex> sourceExecutionVertices = new HashSet<>(); executionEdges.forEach( edge -> { ExecutionVertex leftVertex = edge.getLeftVertex(); ExecutionVertex rightVertex = edge.getRightVertex(); if (leftVertex.getAction() instanceof SourceAction) { sourceExecutionVertices.add(leftVertex); } inputVerticesMap .computeIfAbsent(rightVertex.getVertexId(), id -> new ArrayList<>()) .add(leftVertex); targetVerticesMap .computeIfAbsent(leftVertex.getVertexId(), id -> new ArrayList<>()) .add(rightVertex); }); Map<Long, ExecutionVertex> transformChainVertexMap = new HashMap<>(); Map<Long, Long> chainedTransformVerticesMapping = new HashMap<>(); // Loop over each source, starting with all head nodes in the DAG for (ExecutionVertex sourceVertex : sourceExecutionVertices) { List<ExecutionVertex> vertices = new ArrayList<>(); vertices.add(sourceVertex); for (int index = 0; index < vertices.size(); index++) { ExecutionVertex vertex = vertices.get(index); fillChainedTransformExecutionVertex( vertex, chainedTransformVerticesMapping, transformChainVertexMap, executionEdges, Collections.unmodifiableMap(inputVerticesMap), Collections.unmodifiableMap(targetVerticesMap)); // If the current node has downstream nodes, add all downstream nodes to the list // The second loop will recalculate the newly added downstream nodes, which could be Transform nodes or Sink nodes if (targetVerticesMap.containsKey(vertex.getVertexId())) { vertices.addAll(targetVerticesMap.get(vertex.getVertexId())); } } } // After looping, chained Transform nodes will be chained, and the chainable edges will be removed from the execution plan // Therefore, the logical plan at this point cannot form the graph relationship and needs to be rebuilt Set<ExecutionEdge> transformChainEdges = new LinkedHashSet<>(); // Loop over existing relationships for (ExecutionEdge executionEdge : executionEdges) { ExecutionVertex leftVertex = executionEdge.getLeftVertex(); ExecutionVertex rightVertex = executionEdge.getRightVertex(); boolean needRebuild = false; // Check if the input or output nodes of the current edge are in the chain mapping // If so, the node has been chained, and we need to find the chained node in the mapping // and rebuild the DAG if (chainedTransformVerticesMapping.containsKey(leftVertex.getVertexId())) { needRebuild = true; leftVertex = transformChainVertexMap.get( chainedTransformVerticesMapping.get(leftVertex.getVertexId())); } if (chainedTransformVerticesMapping.containsKey(rightVertex.getVertexId())) { needRebuild = true; rightVertex = transformChainVertexMap.get( chainedTransformVerticesMapping.get(rightVertex.getVertexId())); } if (needRebuild) { executionEdge = new ExecutionEdge(leftVertex, rightVertex); } transformChainEdges.add(executionEdge); } return transformChainEdges; } private void fillChainedTransformExecutionVertex( ExecutionVertex currentVertex, Map<Long, Long> chainedTransformVerticesMapping, Map<Long, ExecutionVertex> transformChainVertexMap, Set<ExecutionEdge> executionEdges, Map<Long, List<ExecutionVertex>> inputVerticesMap, Map<Long, List<ExecutionVertex>> targetVerticesMap) { // Exit if the map already contains the current node if (chainedTransformVerticesMapping.containsKey(currentVertex.getVertexId())) { return; } List<ExecutionVertex> transformChainedVertices = new ArrayList<>(); collectChainedVertices( currentVertex, transformChainedVertices, executionEdges, inputVerticesMap, targetVerticesMap); // If the list is not empty, it means the Transform nodes in the list can be merged into one if (transformChainedVertices.size() > 0) { long newVertexId = idGenerator.getNextId(); List<SeaTunnelTransform> transforms = new ArrayList<>(transformChainedVertices.size()); List<String> names = new ArrayList<>(transformChainedVertices.size()); Set<URL> jars = new HashSet<>(); Set<ConnectorJarIdentifier> identifiers = new HashSet<>(); transformChainedVertices.stream() .peek( // Add all historical node IDs and new node IDs to the mapping vertex -> chainedTransformVerticesMapping.put( vertex.getVertexId(), newVertexId)) .map(ExecutionVertex::getAction) .map(action -> (TransformAction) action) .forEach( action -> { transforms.add(action.getTransform()); jars.addAll(action.getJarUrls()); identifiers.addAll(action.getConnectorJarIdentifiers()); names.add(action.getName()); }); String transformChainActionName = String.format("TransformChain[%s]", String.join("->", names)); // Merge multiple TransformActions into one TransformChainAction TransformChainAction transformChainAction = new TransformChainAction( newVertexId, transformChainActionName, jars, identifiers, transforms); transformChainAction.setParallelism(currentVertex.getAction().getParallelism()); ExecutionVertex executionVertex = new ExecutionVertex( newVertexId, transformChainAction, currentVertex.getParallelism()); // Store the modified node information in the state transformChainVertexMap.put(newVertexId, executionVertex); chainedTransformVerticesMapping.put( currentVertex.getVertexId(), executionVertex.getVertexId()); } } private void collectChainedVertices( ExecutionVertex currentVertex, List<ExecutionVertex> chainedVertices, Set<ExecutionEdge> executionEdges, Map<Long, List<ExecutionVertex>> inputVerticesMap, Map<Long, List<ExecutionVertex>> targetVerticesMap) { Action action = currentVertex.getAction(); // Only merge TransformAction if (action instanceof TransformAction) { if (chainedVertices.size() == 0) { // If the list of vertices to be merged is empty, add itself to the list // The condition for entering this branch is that the current node is a TransformAction and the list to be merged is empty // There may be several scenarios: the first Transform node enters, and this Transform node has no constraints chainedVertices.add(currentVertex); } else if (inputVerticesMap.get(currentVertex.getVertexId()).size() == 1) { // When this condition is entered, it means: // The list of vertices to be merged already has at least one TransformAction // The scenario at this point is that the upstream Transform node has only one downstream node, ie, the current node. This constraint is ensured by the following judgment // Chain the current TransformAction node with the previous TransformAction node // Delete this relationship from the execution plan executionEdges.remove( new ExecutionEdge( chainedVertices.get(chainedVertices.size() - 1), currentVertex)); // Add itself to the list of nodes to be merged chainedVertices.add(currentVertex); } else { return; } } else { return; } // It cannot chain to any target vertex if it has multiple target vertices. if (targetVerticesMap.get(currentVertex.getVertexId()).size() == 1) { // If the current node has only one downstream node, try chaining again // If the current node has multiple downstream nodes, it will not chain the downstream nodes, so it can be ensured that the above chaining is a one-to-one relationship // This call occurs when the Transform node has only one downstream node collectChainedVertices( targetVerticesMap.get(currentVertex.getVertexId()).get(0), chainedVertices, executionEdges, inputVerticesMap, targetVerticesMap); } }

Passo 4

 private List<Pipeline> generatePipelines(Set<ExecutionEdge> executionEdges) { // Stores each execution plan node Set<ExecutionVertex> executionVertices = new LinkedHashSet<>(); for (ExecutionEdge edge : executionEdges) { executionVertices.add(edge.getLeftVertex()); executionVertices.add(edge.getRightVertex()); } // Calls the Pipeline generator to convert the execution plan into Pipelines PipelineGenerator pipelineGenerator = new PipelineGenerator(executionVertices, new ArrayList<>(executionEdges)); List<Pipeline> pipelines = pipelineGenerator.generatePipelines(); Set<String> duplicatedActionNames = new HashSet<>(); Set<String> actionNames = new HashSet<>(); for (Pipeline pipeline : pipelines) { Integer pipelineId = pipeline.getId(); for (ExecutionVertex vertex : pipeline.getVertexes().values()) { // Get each execution node of the current Pipeline, reset the Action name, and add the pipeline name Action action = vertex.getAction(); String actionName = String.format("pipeline-%s [%s]", pipelineId, action.getName()); action.setName(actionName); if (actionNames.contains(actionName)) { duplicatedActionNames.add(actionName); } actionNames.add(action Name); } } if (duplicatedActionNames.size() > 0) { throw new RuntimeException( String.format( "Duplicated Action names found: %s", duplicatedActionNames)); } return pipelines; } public PipelineGenerator(Collection<ExecutionVertex> vertices, List<ExecutionEdge> edges) { this.vertices = vertices; this.edges = edges; } public List<Pipeline> generatePipelines() { List<ExecutionEdge> executionEdges = expandEdgeByParallelism(edges); // Split the execution plan into unrelated execution plans based on their relationships // Divide into several unrelated execution plans List<List<ExecutionEdge>> edgesList = splitUnrelatedEdges(executionEdges); edgesList = edgesList.stream() .flatMap(e -> this.splitUnionEdge(e).stream()) .collect(Collectors.toList()); // Just convert execution plan to pipeline at now. We should split it to multi pipeline with // cache in the future IdGenerator idGenerator = new IdGenerator(); // Convert execution plan graph to Pipeline return edgesList.stream() .map( e -> { Map<Long, ExecutionVertex> vertexes = new HashMap<>(); List<ExecutionEdge> pipelineEdges = e.stream() .map( edge -> { if (!vertexes.containsKey( edge.getLeftVertexId())) { vertexes.put( edge.getLeftVertexId(), edge.getLeftVertex()); } ExecutionVertex source = vertexes.get( edge.getLeftVertexId()); if (!vertexes.containsKey( edge.getRightVertexId())) { vertexes.put( edge.getRightVertexId(), edge.getRightVertex()); } ExecutionVertex destination = vertexes.get( edge.getRightVertexId()); return new ExecutionEdge( source, destination); }) .collect(Collectors.toList()); return new Pipeline( (int) idGenerator.getNextId(), pipelineEdges, vertexes); }) .collect(Collectors.toList()); }
  • Passo 5

A quinta etapa envolve a geração das instâncias do plano de execução, passando os parâmetros do Pipeline gerados na quarta etapa.

Resumo:

O plano de execução executa as seguintes tarefas no plano lógico:

  1. Quando uma origem gera várias tabelas e vários nós de coleta dependem dessa origem, um nó de embaralhamento é adicionado entre eles.
  2. Tentativa de encadear nós de transformação de mesclagem, combinando vários nós de transformação em um único nó.
  3. Divida as tarefas, dividindo um configuration file/LogicalDag em várias tarefas não relacionadas representadas como List<Pipeline> .


Geração do Plano Físico

Antes de nos aprofundarmos na geração do plano físico, vamos primeiro revisar quais informações estão incluídas no plano físico gerado e examinar seus componentes internos.

 public class PhysicalPlan { private final List<SubPlan> pipelineList; private final AtomicInteger finishedPipelineNum = new AtomicInteger(0); private final AtomicInteger canceledPipelineNum = new AtomicInteger(0); private final AtomicInteger failedPipelineNum = new AtomicInteger(0); private final JobImmutableInformation jobImmutableInformation; private final IMap<Object, Object> runningJobStateIMap; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private CompletableFuture<JobResult> jobEndFuture; private final AtomicReference<String> errorBySubPlan = new AtomicReference<>(); private final String jobFullName; private final long jobId; private JobMaster jobMaster; private boolean makeJobEndWhenPipelineEnded = true; private volatile boolean isRunning = false; }


Nesta classe, um campo-chave é pipelineList , que é uma lista de instâncias SubPlan :

 public class SubPlan { private final int pipelineMaxRestoreNum; private final int pipelineRestoreIntervalSeconds; private final List<PhysicalVertex> physicalVertexList; private final List<PhysicalVertex> coordinatorVertexList; private final int pipelineId; private final AtomicInteger finishedTaskNum = new AtomicInteger(0); private final AtomicInteger canceledTaskNum = new AtomicInteger(0); private final AtomicInteger failedTaskNum = new AtomicInteger(0); private final String pipelineFullName; private final IMap<Object, Object> runningJobStateIMap; private final Map<String, String> tags; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private CompletableFuture<PipelineExecutionState> pipelineFuture; private final PipelineLocation pipelineLocation; private AtomicReference<String> errorByPhysicalVertex = new AtomicReference<>(); private final ExecutorService executorService; private JobMaster jobMaster; private PassiveCompletableFuture<Void> reSchedulerPipelineFuture; private Integer pipelineRestoreNum; private final Object restoreLock = new Object(); private volatile PipelineStatus currPipelineStatus; public volatile boolean isRunning = false; private Map<TaskGroupLocation, SlotProfile> slotProfiles; }


A classe SubPlan mantém uma lista de instâncias PhysicalVertex , divididas em nós de plano físico e nós coordenadores:

 public class PhysicalVertex { private final TaskGroupLocation taskGroupLocation; private final String taskFullName; private final TaskGroupDefaultImpl taskGroup; private final ExecutorService executorService; private final FlakeIdGenerator flakeIdGenerator; private final Set<URL> pluginJarsUrls; private final Set<ConnectorJarIdentifier> connectorJarIdentifiers; private final IMap<Object, Object> runningJobStateIMap; private CompletableFuture<TaskExecutionState> taskFuture; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private final NodeEngine nodeEngine; private JobMaster jobMaster; private volatile ExecutionState currExecutionState = ExecutionState.CREATED; public volatile boolean isRunning = false; private AtomicReference<String> errorByPhysicalVertex = new AtomicReference<>(); }
 public class TaskGroupDefaultImpl implements TaskGroup { private final TaskGroupLocation taskGroupLocation; private final String taskGroupName; // Stores the tasks that the physical node needs to execute // Each task could be for reading data, writing data, data splitting, checkpoint tasks, etc. private final Map<Long, Task> tasks; }


O PhysicalPlanGenerator é responsável por converter o plano de execução em SeaTunnelTask e adicionar várias tarefas de coordenação, como divisão de dados, confirmação de dados e tarefas de ponto de verificação durante a execução.

 public PhysicalPlanGenerator( @NonNull ExecutionPlan executionPlan, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType) { this.pipelines = executionPlan.getPipelines(); this.nodeEngine = nodeEngine; this.jobImmutableInformation = jobImmutableInformation; this.initializationTimestamp = initializationTimestamp; this.executorService = executorService; this.flakeIdGenerator = flakeIdGenerator; // the checkpoint of a pipeline this.pipelineTasks = new HashSet<>(); this.startingTasks = new HashSet<>(); this.subtaskActions = new HashMap<>(); this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.queueType = queueType; } public Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> generate() { // Get the node filter conditions from user configuration to select the nodes where tasks will run Map<String, String> tagFilter = (Map<String, String>) jobImmutableInformation .getJobConfig() .getEnvOptions() .get(EnvCommonOptions.NODE_TAG_FILTER.key()); // TODO Determine which tasks do not need to be restored according to state CopyOnWriteArrayList<PassiveCompletableFuture<PipelineStatus>> waitForCompleteBySubPlanList = new CopyOnWriteArrayList<>(); Map<Integer, CheckpointPlan> checkpointPlans = new HashMap<>(); final int totalPipelineNum = pipelines.size(); Stream<SubPlan> subPlanStream = pipelines.stream() .map( pipeline -> { // Clear the state each time this.pipelineTasks.clear(); this.startingTasks.clear(); this.subtaskActions.clear(); final int pipelineId = pipeline.getId(); // Get current task information final List<ExecutionEdge> edges = pipeline.getEdges(); // Get all SourceActions List<SourceAction<?, ?, ?>> sources = findSourceAction(edges); // Generate Source data slice tasks, ie, SourceSplitEnumeratorTask // This task calls the SourceSplitEnumerator class in the connector if supported List<PhysicalVertex> coordinatorVertexList = getEnumeratorTask( sources, pipelineId, totalPipelineNum); // Generate Sink commit tasks, ie, SinkAggregatedCommitterTask // This task calls the SinkAggregatedCommitter class in the connector if supported // These two tasks are executed as coordination tasks coordinatorVertexList.addAll( getCommitterTask(edges, pipelineId, totalPipelineNum)); List<PhysicalVertex> physicalVertexList = getSourceTask( edges, sources, pipelineId, totalPipelineNum); // physicalVertexList.addAll( getShuffleTask(edges, pipelineId, totalPipelineNum)); CompletableFuture<PipelineStatus> pipelineFuture = new CompletableFuture<>(); waitForCompleteBySubPlanList.add( new PassiveCompletableFuture<>(pipelineFuture)); // Add checkpoint tasks checkpointPlans.put( pipelineId, CheckpointPlan.builder() .pipelineId(pipelineId) .pipelineSubtasks(pipelineTasks) .startingSubtasks(startingTasks) .pipelineActions(pipeline.getActions()) .subtaskActions(subtaskActions) .build()); return new SubPlan( pipelineId, totalPipelineNum, initializationTimestamp, physicalVertexList, coordinatorVertexList, jobImmutableInformation, executorService, runningJobStateIMap, runningJobStateTimestampsIMap, tagFilter); }); PhysicalPlan physicalPlan = new PhysicalPlan( subPlanStream.collect(Collectors.toList()), executorService, jobImmutableInformation, initializationTimestamp, runningJobStateIMap, runningJobStateTimestampsIMap); return Tuple2.tuple2(physicalPlan, checkpointPlans); }

O processo de geração do plano físico envolve a conversão do plano de execução em SeaTunnelTask e a adição de várias tarefas de coordenação, como tarefas de divisão de dados, tarefas de confirmação de dados e tarefas de ponto de verificação.


No SeaTunnelTask , as tarefas são convertidas em SourceFlowLifeCycle , SinkFlowLifeCycle , TransformFlowLifeCycle , ShuffleSinkFlowLifeCycle , ShuffleSourceFlowLifeCycle .


Por exemplo, as classes SourceFlowLifeCycle e SinkFlowLifeCycle são as seguintes:

  • SourceFlowCiclo de vida
 @Override public void init() throws Exception { this.splitSerializer = sourceAction.getSource().getSplitSerializer(); this.reader = sourceAction .getSource() .createReader( new SourceReaderContext( indexID, sourceAction.getSource().getBoundedness(), this, metricsContext, eventListener)); this.enumeratorTaskAddress = getEnumeratorTaskAddress(); } @Override public void open() throws Exception { reader.open(); register(); } public void collect() throws Exception { if (!prepareClose) { if (schemaChanging()) { log.debug("schema is changing, stop reader collect records"); Thread.sleep(200); return; } reader.pollNext(collector); if (collector.isEmptyThisPollNext()) { Thread.sleep(100); } else { collector.resetEmptyThisPollNext(); /** * The current thread obtain a checkpoint lock in the method {@link * SourceReader#pollNext( Collector)}. When trigger the checkpoint or savepoint, * other threads try to obtain the lock in the method {@link * SourceFlowLifeCycle#triggerBarrier(Barrier)}. When high CPU load, checkpoint * process may be blocked as long time. So we need sleep to free the CPU. */ Thread.sleep(0L); } if (collector.captureSchemaChangeBeforeCheckpointSignal()) { if (schemaChangePhase.get() != null) { throw new IllegalStateException( "previous schema changes in progress, schemaChangePhase: " + schemaChangePhase.get()); } schemaChangePhase.set(SchemaChangePhase.createBeforePhase()); runningTask.triggerSchemaChangeBeforeCheckpoint().get(); log.info("triggered schema-change-before checkpoint, stopping collect data"); } else if (collector.captureSchemaChangeAfterCheckpointSignal()) { if (schemaChangePhase.get() != null) { throw new IllegalStateException( "previous schema changes in progress, schemaChangePhase: " + schemaChangePhase.get()); } schemaChangePhase.set(SchemaChangePhase.createAfterPhase()); runningTask.triggerSchemaChangeAfterCheckpoint().get(); log.info("triggered schema-change-after checkpoint, stopping collect data"); } } else { Thread.sleep(100); } }

No SourceFlowLifeCycle , a leitura de dados é realizada no método collect . Uma vez que os dados são lidos, eles são colocados no SeaTunnelSourceCollector . Quando os dados são recebidos, o coletor atualiza as métricas e envia os dados para componentes downstream.


 @Override public void collect(T row) { try { if (row instanceof SeaTunnelRow) { String tableId = ((SeaTunnelRow) row).getTableId(); int size; if (rowType instanceof SeaTunnelRowType) { size = ((SeaTunnelRow) row).getBytesSize((SeaTunnelRowType) rowType); } else if (rowType instanceof MultipleRowType) { size = ((SeaTunnelRow) row).getBytesSize(rowTypeMap.get(tableId)); } else { throw new SeaTunnelEngineException( "Unsupported row type: " + rowType.getClass().getName()); } sourceReceivedBytes.inc(size); sourceReceivedBytesPerSeconds.markEvent(size); flowControlGate.audit((SeaTunnelRow) row); if (StringUtils.isNotEmpty(tableId)) { String tableName = getFullName(TablePath.of(tableId)); Counter sourceTableCounter = sourceReceivedCountPerTable.get(tableName); if (Objects.nonNull(sourceTableCounter)) { sourceTableCounter.inc(); } else { Counter counter = metricsContext.counter(SOURCE_RECEIVED_COUNT + "#" + tableName); counter.inc(); sourceReceivedCountPerTable.put(tableName, counter); } } } sendRecordToNext(new Record<>(row)); emptyThisPollNext = false; sourceReceivedCount.inc(); sourceReceivedQPS.markEvent(); } catch (IOException e) { throw new RuntimeException(e); } } public void sendRecordToNext(Record<?> record) throws IOException { synchronized (checkpointLock) { for (OneInputFlowLifeCycle<Record<?>> output : outputs) { output.received(record); } } }
  • Ciclo de vida do fluxo de sumidouro
 @Override public void received(Record<?> record) { try { if (record.getData() instanceof Barrier) { long startTime = System.currentTimeMillis(); Barrier barrier = (Barrier) record.getData(); if (barrier.prepareClose(this.taskLocation)) { prepareClose = true; } if (barrier.snapshot()) { try { lastCommitInfo = writer.prepareCommit(); } catch (Exception e) { writer.abortPrepare(); throw e; } List<StateT> states = writer.snapshotState(barrier.getId()); if (!writerStateSerializer.isPresent()) { runningTask.addState( barrier, ActionStateKey.of(sinkAction), Collections.emptyList()); } else { runningTask.addState( barrier, ActionStateKey.of(sinkAction), serializeStates(writerStateSerializer.get(), states)); } if (containAggCommitter) { CommitInfoT commitInfoT = null; if (lastCommitInfo.isPresent()) { commitInfoT = lastCommitInfo.get(); } runningTask .getExecutionContext() .sendToMember( new SinkPrepareCommitOperation<CommitInfoT>( barrier, committerTaskLocation, commitInfoSerializer.isPresent() ? commitInfoSerializer .get() .serialize(commitInfoT) : null), committerTaskAddress) .join(); } } else { if (containAggCommitter) { runningTask .getExecutionContext() .sendToMember( new BarrierFlowOperation(barrier, committerTaskLocation), committerTaskAddress) .join(); } } runningTask.ack(barrier); log.debug( "trigger barrier [{}] finished, cost {}ms. taskLocation [{}]", barrier.getId(), System.currentTimeMillis() - startTime, taskLocation); } else if (record.getData() instanceof SchemaChangeEvent) { if (prepareClose) { return; } SchemaChangeEvent event = (SchemaChangeEvent) record.getData(); writer.applySchemaChange(event); } else { if (prepareClose) { return; } writer.write((T) record.getData()); sinkWriteCount.inc(); sinkWriteQPS.markEvent(); if (record.getData() instanceof SeaTunnelRow) { long size = ((SeaTunnelRow) record.getData()).getBytesSize(); sinkWriteBytes.inc(size); sinkWriteBytesPerSeconds.markEvent(size); String tableId = ((SeaTunnelRow) record.getData()).getTableId(); if (StringUtils.isNotBlank(tableId)) { String tableName = getFullName(TablePath.of(tableId)); Counter sinkTableCounter = sinkWriteCountPerTable.get(tableName); if (Objects.nonNull(sinkTableCounter)) { sinkTableCounter.inc(); } else { Counter counter = metricsContext.counter(SINK_WRITE_COUNT + "#" + tableName); counter.inc(); sinkWriteCountPerTable.put(tableName, counter); } } } } } catch (Exception e) { throw new RuntimeException(e); } }

Execução de Tarefas

No CoordinatorService , um plano físico é gerado por meio do método init e, em seguida, o método run é chamado para realmente iniciar a tarefa.

 CoordinatorService { jobMaster.init( runningJobInfoIMap.get(jobId).getInitializationTimestamp(), false); ... jobMaster.run(); } JobMaster { public void run() { ... physicalPlan.startJob(); ... } }


No JobMaster , ao iniciar a tarefa, ele chama o método startJob do PhysicalPlan .

 public void startJob() { isRunning = true; log.info("{} state process is start", getJobFullName()); stateProcess(); } private synchronized void stateProcess() { if (!isRunning) { log.warn(String.format("%s state process is stopped", jobFullName)); return; } switch (getJobStatus()) { case CREATED: updateJobState(JobStatus.SCHEDULED); break; case SCHEDULED: getPipelineList() .forEach( subPlan -> { if (PipelineStatus.CREATED.equals( subPlan.getCurrPipelineStatus())) { subPlan.startSubPlanStateProcess(); } }); updateJobState(JobStatus.RUNNING); break; case RUNNING: case DOING_SAVEPOINT: break; case FAILING: case CANCELING: jobMaster.neverNeedRestore(); getPipelineList().forEach(SubPlan::cancelPipeline); break; case FAILED: case CANCELED: case SAVEPOINT_DONE: case FINISHED: stopJobStateProcess(); jobEndFuture.complete(new JobResult(getJobStatus(), errorBySubPlan.get())); return; default: throw new IllegalArgumentException("Unknown Job State: " + getJobStatus()); } }

No PhysicalPlan , iniciar uma tarefa atualiza o status da tarefa para SCHEDULED e continua a chamar o método start do SubPlan .

 public void startSubPlanStateProcess() { isRunning = true; log.info("{} state process is start", getPipelineFullName()); stateProcess(); } private synchronized void stateProcess() { if (!isRunning) { log.warn(String.format("%s state process not start", pipelineFullName)); return; } PipelineStatus state = getCurrPipelineStatus(); switch (state) { case CREATED: updatePipelineState(PipelineStatus.SCHEDULED); break; case SCHEDULED: try { ResourceUtils.applyResourceForPipeline(jobMaster.getResourceManager(), this); log.debug( "slotProfiles: {}, PipelineLocation: {}", slotProfiles, this.getPipelineLocation()); updatePipelineState(PipelineStatus.DEPLOYING); } catch (Exception e) { makePipelineFailing(e); } break; case DEPLOYING: coordinatorVertexList.forEach( task -> { if (task.getExecutionState().equals(ExecutionState.CREATED)) { task.startPhysicalVertex(); task.makeTaskGroupDeploy(); } }); physicalVertexList.forEach( task -> { if (task.getExecutionState().equals(ExecutionState.CREATED)) { task.startPhysicalVertex(); task.makeTaskGroupDeploy(); } }); updatePipelineState(PipelineStatus.RUNNING); break; case RUNNING: break; case FAILING: case CANCELING: coordinatorVertexList.forEach( task -> { task.startPhysicalVertex(); task.cancel(); }); physicalVertexList.forEach( task -> { task.startPhysicalVertex(); task.cancel(); }); break; case FAILED: case CANCELED: if (checkNeedRestore(state) && prepareRestorePipeline()) { jobMaster.releasePipelineResource(this); restorePipeline(); return; } subPlanDone(state); stopSubPlanStateProcess(); pipelineFuture.complete( new PipelineExecutionState(pipelineId, state, errorByPhysicalVertex.get())); return; case FINISHED: subPlanDone(state); stopSubPlanStateProcess(); pipelineFuture.complete( new PipelineExecutionState( pipelineId, getPipelineState(), errorByPhysicalVertex.get())); return; default: throw new IllegalArgumentException("Unknown Pipeline State: " + getPipelineState()); } }

Em um SubPlan , os recursos são aplicados para todas as tarefas. A aplicação de recursos é feita por meio do ResourceManager . Durante a aplicação de recursos, os nós são selecionados com base em tags definidas pelo usuário para garantir que as tarefas sejam executadas em nós específicos, obtendo isolamento de recursos.


 public static void applyResourceForPipeline( @NonNull ResourceManager resourceManager, @NonNull SubPlan subPlan) { Map<TaskGroupLocation, CompletableFuture<SlotProfile>> futures = new HashMap<>(); Map<TaskGroupLocation, SlotProfile> slotProfiles = new HashMap<>(); // TODO If there is no enough resources for tasks, we need add some wait profile subPlan.getCoordinatorVertexList() .forEach( coordinator -> futures.put( coordinator.getTaskGroupLocation(), applyResourceForTask( resourceManager, coordinator, subPlan.getTags()))); subPlan.getPhysicalVertexList() .forEach( task -> futures.put( task.getTaskGroupLocation(), applyResourceForTask( resourceManager, task, subPlan.getTags()))); futures.forEach( (key, value) -> { try { slotProfiles.put(key, value == null ? null : value.join()); } catch (CompletionException e) { // do nothing } }); // set it first, avoid can't get it when get resource not enough exception and need release // applied resource subPlan.getJobMaster().setOwnedSlotProfiles(subPlan.getPipelineLocation(), slotProfiles); if (futures.size() != slotProfiles.size()) { throw new NoEnoughResourceException(); } } public static CompletableFuture<SlotProfile> applyResourceForTask( ResourceManager resourceManager, PhysicalVertex task, Map<String, String> tags) { // TODO custom resource size return resourceManager.applyResource( task.getTaskGroupLocation().getJobId(), new ResourceProfile(), tags); } public CompletableFuture<List<SlotProfile>> applyResources( long jobId, List<ResourceProfile> resourceProfile, Map<String, String> tagFilter) throws NoEnoughResourceException { waitingWorkerRegister(); ConcurrentMap<Address, WorkerProfile> matchedWorker = filterWorkerByTag(tagFilter); if (matchedWorker.isEmpty()) { log.error("No matched worker with tag filter {}.", tagFilter); throw new NoEnoughResourceException(); } return new ResourceRequestHandler(jobId, resourceProfile, matchedWorker, this) .request(tagFilter); }

Quando todos os nós disponíveis são obtidos, os nós são embaralhados e um nó com recursos maiores do que os recursos necessários é selecionado aleatoriamente. O nó é então contatado e um RequestSlotOperation é enviado a ele.


 public Optional<WorkerProfile> preCheckWorkerResource(ResourceProfile r) { // Shuffle the order to ensure random selection of workers List<WorkerProfile> workerProfiles = Arrays.asList(registerWorker.values().toArray(new WorkerProfile[0])); Collections.shuffle(workerProfiles); // Check if there are still unassigned slots Optional<WorkerProfile> workerProfile = workerProfiles.stream() .filter( worker -> Arrays.stream(worker.getUnassignedSlots()) .anyMatch( slot -> slot.getResourceProfile() .enoughThan(r))) .findAny(); if (!workerProfile.isPresent()) { // Check if there are still unassigned resources workerProfile = workerProfiles.stream() .filter(WorkerProfile::isDynamicSlot) .filter(worker -> worker.getUnassignedResource().enoughThan(r)) .findAny(); } return workerProfile; } private CompletableFuture<SlotAndWorkerProfile> singleResourceRequestToMember( int i, ResourceProfile r, WorkerProfile workerProfile) { CompletableFuture<SlotAndWorkerProfile> future = resourceManager.sendToMember( new RequestSlotOperation(jobId, r), workerProfile.getAddress()); return future.whenComplete( withTryCatch( LOGGER, (slotAndWorkerProfile, error) -> { if (error != null) { throw new RuntimeException(error); } else { resourceManager.heartbeat(slotAndWorkerProfile.getWorkerProfile()); addSlotToCacheMap(i, slotAndWorkerProfile.getSlotProfile()); } })); }

Quando o SlotService do nó recebe a solicitação requestSlot , ele atualiza suas próprias informações e as retorna ao nó mestre. Se a solicitação de recurso não atender ao resultado esperado, uma NoEnoughResourceException será lançada, indicando falha da tarefa. Quando a alocação de recursos for bem-sucedida, a implantação da tarefa começa com task.makeTaskGroupDeploy() , que envia a tarefa ao nó worker para execução.


 TaskDeployState deployState = deploy(jobMaster.getOwnedSlotProfiles(taskGroupLocation)); public TaskDeployState deploy(@NonNull SlotProfile slotProfile) { try { if (slotProfile.getWorker().equals(nodeEngine.getThisAddress())) { return deployOnLocal(slotProfile); } else { return deployOnRemote(slotProfile); } } catch (Throwable th) { return TaskDeployState.failed(th); } } private TaskDeployState deployOnRemote(@Non Null SlotProfile slotProfile) { return deployInternal( taskGroupImmutableInformation -> { try { return (TaskDeployState) NodeEngineUtil.sendOperationToMemberNode( nodeEngine, new DeployTaskOperation( slotProfile, nodeEngine .getSerializationService() .toData( taskGroupImmutableInformation)), slotProfile.getWorker()) .get(); } catch (Exception e) { if (getExecutionState().isEndState()) { log.warn(ExceptionUtils.getMessage(e)); log.warn( String.format( "%s deploy error, but the state is already in end state %s, skip this error", getTaskFullName(), currExecutionState)); return TaskDeployState.success(); } else { return TaskDeployState.failed(e); } } }); }

Implantação de tarefas

Ao implantar uma tarefa, as informações da tarefa são enviadas ao nó obtido durante a alocação de recursos:

 public TaskDeployState deployTask(@NonNull Data taskImmutableInformation) { TaskGroupImmutableInformation taskImmutableInfo = nodeEngine.getSerializationService().toObject(taskImmutableInformation); return deployTask(taskImmutableInfo); } public TaskDeployState deployTask(@NonNull TaskGroupImmutableInformation taskImmutableInfo) { logger.info( String.format( "received deploying task executionId [%s]", taskImmutableInfo.getExecutionId())); TaskGroup taskGroup = null; try { Set<ConnectorJarIdentifier> connectorJarIdentifiers = taskImmutableInfo.getConnectorJarIdentifiers(); Set<URL> jars = new HashSet<>(); ClassLoader classLoader; if (!CollectionUtils.isEmpty(connectorJarIdentifiers)) { // Prioritize obtaining the jar package file required for the current task execution // from the local, if it does not exist locally, it will be downloaded from the // master node. jars = serverConnectorPackageClient.getConnectorJarFromLocal( connectorJarIdentifiers); } else if (!CollectionUtils.isEmpty(taskImmutableInfo.getJars())) { jars = taskImmutableInfo.getJars(); } classLoader = classLoaderService.getClassLoader( taskImmutableInfo.getJobId(), Lists.newArrayList(jars)); if (jars.isEmpty()) { taskGroup = nodeEngine.getSerializationService().toObject(taskImmutableInfo.getGroup()); } else { taskGroup = CustomClassLoadedObject.deserializeWithCustomClassLoader( nodeEngine.getSerializationService(), classLoader, taskImmutableInfo.getGroup()); } logger.info( String.format( "deploying task %s, executionId [%s]", taskGroup.getTaskGroupLocation(), taskImmutableInfo.getExecutionId())); synchronized (this) { if (executionContexts.containsKey(taskGroup.getTaskGroupLocation())) { throw new RuntimeException( String.format( "TaskGroupLocation: %s already exists", taskGroup.getTaskGroupLocation())); } deployLocalTask(taskGroup, classLoader, jars); return TaskDeployState.success(); } } catch (Throwable t) { logger.severe( String.format( "TaskGroupID : %s deploy error with Exception: %s", taskGroup != null && taskGroup.getTaskGroupLocation() != null ? taskGroup.getTaskGroupLocation().toString() : "taskGroupLocation is null", ExceptionUtils.getMessage(t))); return TaskDeployState.failed(t); } }

Quando um nó de trabalho recebe a tarefa, ele chama o método deployTask de TaskExecutionService para enviar a tarefa ao pool de threads criado na inicialização.


Quando a tarefa é enviada ao pool de threads:

 private final class BlockingWorker implements Runnable { private final TaskTracker tracker; private final CountDownLatch startedLatch; private BlockingWorker(TaskTracker tracker, CountDownLatch startedLatch) { this.tracker = tracker; this.startedLatch = startedLatch; } @Override public void run() { TaskExecutionService.TaskGroupExecutionTracker taskGroupExecutionTracker = tracker.taskGroupExecutionTracker; ClassLoader classLoader = executionContexts .get(taskGroupExecutionTracker.taskGroup.getTaskGroupLocation()) .getClassLoader(); ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader(); Thread.currentThread().setContextClassLoader(classLoader); final Task t = tracker.task; ProgressState result = null; try { startedLatch.countDown(); t.init(); do { result = t.call(); } while (!result.isDone() && isRunning && !taskGroupExecutionTracker.executionCompletedExceptionally()); ... } }

O método Task.call é invocado e, assim, as tarefas de sincronização de dados são realmente executadas.

Carregador de classe

No SeaTunnel, o ClassLoader padrão foi modificado para priorizar subclasses para evitar conflitos com outras classes de componentes:

 @Override public synchronized ClassLoader getClassLoader(long jobId, Collection<URL> jars) { log.debug("Get classloader for job {} with jars {}", jobId, jars); if (cacheMode) { // with cache mode, all jobs share the same classloader if the jars are the same jobId = 1L; } if (!classLoaderCache.containsKey(jobId)) { classLoaderCache.put(jobId, new ConcurrentHashMap<>()); classLoaderReferenceCount.put(jobId, new ConcurrentHashMap<>()); } Map<String, ClassLoader> classLoaderMap = classLoaderCache.get(jobId); String key = covertJarsToKey(jars); if (classLoaderMap.containsKey(key)) { classLoaderReferenceCount.get(jobId).get(key).incrementAndGet(); return classLoaderMap.get(key); } else { ClassLoader classLoader = new SeaTunnelChildFirstClassLoader(jars); log.info("Create classloader for job {} with jars {}", jobId, jars); classLoaderMap.put(key, classLoader); classLoaderReferenceCount.get(jobId).put(key, new AtomicInteger(1)); return classLoader; } }

Envio de tarefa da API REST

O SeaTunnel também suporta envio de tarefas via REST API. Para habilitar esse recurso, adicione a seguinte configuração ao arquivo hazelcast.yaml :

 network: rest-api: enabled: true endpoint-groups: CLUSTER_WRITE: enabled: true DATA: enabled: true

Após adicionar esta configuração, o nó Hazelcast poderá receber solicitações HTTP.


Usando a API REST para envio de tarefas, o cliente se torna o nó que envia a solicitação HTTP, e o servidor é o cluster do SeaTunnel.


Quando o servidor receber a solicitação, ele chamará o método apropriado com base no URI da solicitação:

 public void handle(HttpPostCommand httpPostCommand) { String uri = httpPostCommand.getURI(); try { if (uri.startsWith(SUBMIT_JOB_URL)) { handleSubmitJob(httpPostCommand, uri); } else if (uri.startsWith(STOP_JOB_URL)) { handleStopJob(httpPostCommand, uri); } else if (uri.startsWith(ENCRYPT_CONFIG)) { handleEncrypt(httpPostCommand); } else { original.handle(httpPostCommand); } } catch (IllegalArgumentException e) { prepareResponse(SC_400, httpPostCommand, exceptionResponse(e)); } catch (Throwable e) { logger.warning("An error occurred while handling request " + httpPostCommand, e); prepareResponse(SC_500, httpPostCommand, exceptionResponse(e)); } this.textCommandService.sendResponse(httpPostCommand); }

O método para manipular a solicitação de envio de tarefa é determinado pelo caminho:

 private void handleSubmitJob(HttpPostCommand httpPostCommand, String uri) throws IllegalArgumentException { Map<String, String> requestParams = new HashMap<>(); RestUtil.buildRequestParams(requestParams, uri); Config config = RestUtil.buildConfig(requestHandle(httpPostCommand), false); ReadonlyConfig envOptions = ReadonlyConfig.fromConfig(config.getConfig("env")); String jobName = envOptions.get(EnvCommonOptions.JOB_NAME); JobConfig jobConfig = new JobConfig(); jobConfig.setName( StringUtils.isEmpty(requestParams.get(RestConstant.JOB_NAME)) ? jobName : requestParams.get(RestConstant.JOB_NAME)); boolean startWithSavePoint = Boolean.parseBoolean(requestParams.get(RestConstant.IS_START_WITH_SAVE_POINT)); String jobIdStr = requestParams.get(RestConstant.JOB_ID); Long finalJobId = StringUtils.isNotBlank(jobIdStr) ? Long.parseLong(jobIdStr) : null; SeaTunnelServer seaTunnelServer = getSeaTunnelServer(); RestJobExecutionEnvironment restJobExecutionEnvironment = new RestJobExecutionEnvironment( seaTunnelServer, jobConfig, config, textCommandService.getNode(), startWithSavePoint, finalJobId); JobImmutableInformation jobImmutableInformation = restJobExecutionEnvironment.build(); long jobId = jobImmutableInformation.getJobId(); if (!seaTunnelServer.isMasterNode()) { NodeEngineUtil.sendOperationToMasterNode( getNode().nodeEngine, new SubmitJobOperation( jobId, getNode().nodeEngine.toData(jobImmutableInformation), jobImmutableInformation.isStartWithSavePoint())) .join(); } else { submitJob(seaTunnelServer, jobImmutableInformation, jobConfig); } this.prepareResponse( httpPostCommand, new JsonObject() .add(RestConstant.JOB_ID, String.valueOf(jobId)) .add(RestConstant.JOB_NAME, jobConfig.getName())); }

A lógica aqui é similar à do lado do cliente. Como não há modo local, um serviço local não precisa ser criado.


No lado do cliente, a classe ClientJobExecutionEnvironment é usada para análise de plano lógico e, da mesma forma, a classe RestJobExecutionEnvironment executa as mesmas tarefas.


Ao enviar uma tarefa, se o nó atual não for o nó mestre, ele enviará informações para o nó mestre. O nó mestre manipulará o envio de tarefas de forma semelhante a como manipula comandos do cliente de linha de comando.


Se o nó atual for o nó mestre, ele chamará diretamente o método submitJob , que invoca o método coordinatorService.submitJob para processamento subsequente:

 private void submitJob( SeaTunnelServer seaTunnelServer, JobImmutableInformation jobImmutableInformation, JobConfig jobConfig) { CoordinatorService coordinatorService = seaTunnelServer.getCoordinatorService(); Data data = textCommandService .getNode() .nodeEngine .getSerializationService() .toData(jobImmutableInformation); PassiveCompletableFuture<Void> voidPassiveCompletableFuture = coordinatorService.submitJob( Long.parseLong(jobConfig.getJobContext().getJobId()), data, jobImmutableInformation.isStartWithSavePoint()); voidPassiveCompletableFuture.join(); }

Ambos os métodos de envio envolvem a análise do plano lógico no lado do envio e, em seguida, o envio das informações para o nó mestre. O nó mestre, então, executa a análise do plano físico, alocação e outras operações.